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Abstract

We apply total-variation (TV) regularization methods to Abel inversion to-

mography. Inversions are performed using the fixed-point iteration method

and the regularization parameter is chosen such that the resulting data fi-

delity approximates the known or estimated statistical character of the noisy

data. Five one dimensional examples illustrate the favorable characteristics of

TV regularized solutions: noise inversion suppression and density discontinuity

preservation. One experimental and two simulated examples from X-ray ra-

diography also illustrate limitations due to a linear projection approximation.

TV regularized inversions are shown to be superior to squared gradient regu-

larized inversions for objects with density discontinuities. We also introduce an

adaptive TV method that utilizes a modified discrete gradient operator acting

only apart from data-determined density discontinuities. This method provides

improved density level preservation relative to the basic TV method.
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1 Introduction

The density reconstruction of objects from several radiogarphic views is a classic

and important tomography problem. The inversion is typically formulated

using the Radon Transform or related approaches [3] and is regularized using

any one of a number of techniques. For a good introduction to regularization

of inverse problems see Vogel[4]. For objects with cylindrical symmetry the

inversion reduces to the inverse Abel transform. In this paper we consider

objects with one dimensional intrinsic property descriptions ρ(r). We leave

discussions of applications to objects of general cylindrical symmetry ρ(r, z) to

a future paper. The continuous Abel transform is

d(x) = 2
∫ ∞

|x|

rρ(r)√
r2 − x2

dr, (1)

where d is a line-integral density relative to ρ. For example, if ρ is a volumetric

density then d is an areal density. Equation (1) has a well-defined inverse: if d

is given by Equation (1), then

ρ(r) = − 1
πr

d

dr

∫ ∞

r

xd(x)√
x2 − r2

dx. (2)

A discretized version of Equation (2) is the basis for Abel inversion tomography.

In practice there are a number of difficulties to address. First, Equation (1)

is a simplified description of typically very nonlinear experiments. Second, the

inverse problem can be ill-posed. Since radiographs are transmission inten-

sity maps (or some equivalent), the corresponding intrinsic material property

is an attentuation coefficient. Thus, obtaining an object density requires an

additional transformation either in the radiographic space (intensity to areal

density) or in the object description (attenuation to density). Both approaches

are nontrivial requiring a detailed understanding of the physics of interaction
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between the object and detectors with the radiation. The simplest case, re-

constructing an object of a single material, can usually be solved with good

accuracy. However, multiple-material situations cause this additional transfor-

mation to be non-unique, and significant prior information about the object

is necessary before the inverse Abel transform can be utilized for quantitative

evaluation.

A third difficulty is the ill-conditioning of the discrete inverse Abel trans-

form. While a given inversion is unique, small perturbations in d lead to large

deviations in ρ. This is because Equation (2) defines an unbounded operator

(see [1] for details). The inversion must be regularized to obtain meaningful

results from noisy data.

The discretized Abel transform can be formulated as a matrix P . If we

consider the object radial density values as a vector ρ of n elements and the

areal density projections as a vector d of m elements, then P is a non-sparse

m× n matrix. This projection is invertible if n ≤ m, but is poorly conditioned

when n ∼ m.

The discrete regularized inverse Abel transform is formulated as a functional

minimization problem:

min
ρ

F (ρ) = min
ρ
{||Pρ− d||df + αR(ρ)} , (3)

where || · ||df is an appropriate data fidelity norm, and R(ρ) is a regularization

term determined by a probability model of the types of objects we expect.

In this paper we focus on the use of regularization to address the ill-

conditioned inverse problem. We demonstrate, by example, the importance

of the choice of R for recovering object density profiles ρ from noisy areal den-

sity data d.
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2 Methods

We compute P as the parallel planar projection from a two-dimensional ob-

ject space onto a one-dimensional data space. Noise is treated as stationary

Gaussian white noise. In practice this approach works well, but typical exper-

iments are dominated by locally-Poisson noise statistics. The examples that

follow have different noise characteristics, so our treatment of data fidelity can

be expected to have mixed results. We consider functionals of the form

F (ρ) =
1
2

∫ ∞

0
dr |Pρ− d|2 + 2πα

∫ ∞

0
r dr |∇ρ|p. (4)

In particular we consider p ∈ {0, 1, 2}, corresponding to regularization types

none, total variation (TV), and H1 respectively. We also introduce a modified

TV regularization method that utilizes an adaptive gradient operator. The

minimizing solution of Equation (3) depends on the choice of α as well as the

regularizer R(ρ). The α we select is that which leads to a solution with data

fidelity norm equal to the known or estimated variance in the data noise. Many

problems may also benefit by a more careful approach to data fidelity modelling

that assumes correct statistics. For example, it is clear that most radiography

applications are governed by Poisson statistics. Such treatments are outside

the scope of this paper.

Our approach is to use the largest invertible discrete linear projection and

regularize the inversion. The data resolution determines the size of the projec-

tion operator: the discretization of P is an m × m matrix and the object is

reconstructed at the same resolution. The methods outlined in the following

sections are not limited to this invertabillity condition.
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2.1 Inversion without regularization

The unregularized inversion is the p = 0 case of Equation (4). This lack of

regularization is appropriate for situations in which no prior object knowl-

edge is available. The object density reconstruction is given explicitly by the

psuedo-inverse ρ = (P T P )−1P T d. It is expected to produce poor results in real

scenarios due to the combination of noisy data and the ill-conditioning. In par-

ticular, we expect noise in the most stable directions of P (the most unstable

of P−1) to be amplified significantly and lead to useless inversions.

2.2 H1 regularization

The p = 2 case of Equation (4) is the H1-regularization minimization. It can be

shown to be equivalent to applying the diffusion operator on the unregularized

solution. The equivalent diffusion time is inversely related to α. The result is a

smooth reconstruction clearly biased against discontinuities in ρ. The same is

true for all p > 1 solutions. The object density reconstruction is given explicitly

by

ρ =
(
P T P − 4παr∇2 − 4πα∇

)−1
P T d. (5)

For the gradient operator we use a simple forward differencing with Neu-

mann boundary conditions. If the inverse is nearly singular it is advantagous

to use the solution methods outlined in the next subsection.

2.3 TV regularization

The p = 1 case of Equation (4) is the TV regularization minimization. This

regularization is not biased against density discontinuities; it penalizes such

density edges by a reduction in amplitude but not at the expense of smoothing
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the edge. Following Vogel [4], we use the lagged-diffusivity fixed point method

to find the minimum of F (ρ). We compute the gradient and an approximate

Hessian of the discretized version of the cost functional F that define a quasi-

Newton step towards the minimum. From equation (4),

F ′ (ρ) = P T (Pρ− d) + αL (ρ) ρ, (6)

and

F ′′ (ρ) = P T P + αL (ρ) + αL′ (ρ) ρ, (7)

where we adopt the notation R′ (ρ) = L (ρ) ρ. In particular, if p = 2 then

L (ρ) = 2π
(
r∇2 + ∂

∂r

)
. If p = 1 the non-differentiability of R when ∇ρ = 0 is

problematic. The difficulty is overcome by choosing a suitably small parameter

β and defining R by

R (ρ) = 2π

∫ ∞

0
rdr
√
|∇ρ|2 + β2. (8)

Now R has a well-defined derivative from which L (ρ) is identified:

L (ρ) = 2π

[
r∇ ·

(
∇√

|∇ρ|2 + β2

)
+

(
∂
∂r√

|∇ρ|2 + β2

)]
. (9)

Since L (ρ) depends explicitly on the solution ρ, we let the iterate solution

ρν+1 depend on the previous solution ρν . This is the origin of the term lagged

diffusivity. The quasi-Newton iteration is given by

ρν+1 = ρν − [Hess F (ρ)]−1∇F (ρν)

≈ ρν −
[
P T P + αL (ρν)

]−1 [
P T (Pρν − d) + αL (ρν) ρν

]
.

(10)
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where we use the approximate Hessian which omits the L′ (ρ) ρ term. While

Newton methods are expected to have quadratic convergence, the use of a

lagged-diffusivity and approximate Hessian guarantee only linear convergence

[2]. Methods with faster convergence (for example, primal dual) require larger

computational overhead. For the small problems of interest here (n < 103),

linear convergence is sufficient.

The discretization of Equation (10) is straightforward. First, we define the

diffusivity function

φ =
1√

|∇ρ|2 + β2
, (11)

so that

L (ρ) = φ
∂

∂r
+ r∇ · φ∇. (12)

We then use simple forward differencing to construct the discrete gradient oper-

ator. The use of second order methods can present difficulties when attempting

to recover discontinuities. See [1] for a detailed discussion of the functional F

when p = 1.

2.4 Adaptive TV regularization

Since most static objects have only piecewise continuous densities, we would like

a regularizer with the edge-preserving quality of TV and absolute amplitude

smoothing qualities of H1. To this end, we present a fourth regularization

method which we designate as adaptive total variation (aTV). In this method

we mask the discrete gradient operator along an edge location set that identifies

object discontinuities. This edge location set is determined by dynamically

adjusting the regularization parameter α and a discontinuity threshhold. Both
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are initially large and are gradually reduced over several iterations. A final

H1 regularization is performed with the fully-masked gradient operator. Thus,

regions of constant or smoothly varying density are smoothed and edge locations

and amplitudes are preserved.

3 Examples and Discussion

We show results of the four regularized inversion methods applied to both

synthetic and real data. In all cases we work with objects of one-dimensional

description ρ and corresponding one-dimensional data d.

3.1 Synthetic Example 1

The first example is the reconstruction of an object of ten nested varying den-

sity rings. The object, data, and reconstructions are shown in Figure 1. The

object density profile (a) is given by n = 200 ring densities. The corresponding

projection data (b) is a synthetically generated areal density with added Gaus-

sian noise. The variance of the noise is a uniform 1.5 percent of the maximum

noiseless data value. In each of the remaining subfigures, the actual object is

shown in black and a reconstruction is shown in red: (c) unregularized; (d) H1;

(e) TV; and (f) aTV. As expected, the unregularized reconstruction is over-

whelmed by noise amplification through the ill-conditioned inverse projection

[4]. A smoothing regularizer does very well at reducing high frequency noise

artifacts and even preserves the general character of the object. But the same

regularizer is unable to capture density discontinuities; smoothing the edges.

The TV regularizer captures many of the discontinuities and provides a visually

pleasing reconstruction. The aTV regularization procedure does the best of all.

It best identifies all discontinuities and best preserves the actual density levels
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to within that given by the local data.

3.2 Synthetic Example 2

The second example is the reconstruction of an object with a mixture of piece-

wise smooth and piecewise constant density variations. The object, data, and

reconstructions are shown in Figure 2. The object is of similar description to

the previous object. This object is more complex in that it has some regions of

smoothly varying density and density discontinuities are not regularly spaced.

The data is synthetic with added Gaussian noise of variance 1.0 percent of the

maximum noiseless data value. The reconstructions are ordered as in the pre-

vious example. We note that the TV-based regularizers again perform better.

Even the smallest object features are partially recovered. This suggests that

our regularizer and data fidelity metric are excellent choices.

3.3 Simulated Example 1

The third examples is an edge-detection exercise from a simulated X-ray ra-

diograph of a set of nested spherical shells. Figure 3 shows the radiograph

(a), computed radial areal density (b), and reconstructions (c) and (d). Radio-

graphs were numerically simulated using the Monte Carlo code MCNP1 with

X-ray scattering suppressed. The simulated source is a bi-chromatic cobalt-60

source set at a distance sufficient to adequately approximate a parallel beam.

The object is a set of four nested spheres whose boundary locations are indi-

cated by vertical grid lines in the reconstruction figures. In this case we must

convert the radiograph from intensity (I) to areal density. Without explicit

1MCNP is a particle transport code that includes detailed physics treatments of photoatomic and
photo-electron interactions. It correctly treats Bremsstrahlung photons created from recoil or ejected
electrons as well as photon scattering. It allows high-fidelity simulations of actual experimental
conditions including source particulars and experiment geometry. Our simulated radiographs were
provided by Jeff Favorite of the Applied Physics Division at Los Alamos National Laboratory.
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prior knowledge of the object, the areal density is not uniquely determined.

Instead we use an exponential attenuation approximation (d ∝ ln ( I/I0)) and

invert assuming that the object is a single material. We find that density

edges are accurately reconstructed using a TV prior, but poorly defined using

a smoothing regularizer. Because of the absence of calibration data we do not

attempt to recover densities.

3.4 Simulated Example 2

The fourth example is nearly identical to that of the previous example except

that MCNP is allowed to correctly account for X-ray scattering. Figure 4 shows

(a) a false-color radiograph, (b) computed radial areal density, (c) H1 regular-

ized reconstruction, and (d) aTV regularized reconstruction. No attempt was

made to correct for scattering effects. We find that locations of material bound-

aries (density discontinuities) are still very well determined. The main effect

of the scattering is to render impossible a quantitative analysis of the indi-

vidual densities. In this relatively noiseless scenario, the material boundaries

could be obtained from derivative information on the H1 solution. However,

the previous examples show that this is not generally the case.

3.5 Experimental Example

The fifth example is the reconstruction of a similar spherical comutational test

object from an actual X-ray radiograph.2 Figure 5 shows (a) a false-color ra-

diograph, (b) computed radial areal density, (c) H1 regularized reconstruction,

and (d) aTV regularized reconstruction.. Locations of the actual spherical shell

boundaries are indicated by vertical gridlines in the reconstructions. We find

2The radiograph was acquired by Hans Snyder and David Miko of the Nuclear Nonproliferation
Division at Los Alamos National Laboratory.
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that the H1 solution has a very difficult time distinguishing even qualitative ob-

ject geometry. The aTV solution is significantly better, identifying all material

boundaries. It does, however, retain two intermediate boundaries suggesting a

more complex structure than in the real object. We attribute this effect to a

combination of the scattering distortion effects, uncertainty in beam intensity

correction across the image plane, and measurement noise. The effects of scat-

tering are pronounced in the central region of the reconstructions; the interior

and exterior densities of the actual object are both zero.

4 Conclusion

It is expected that any regularization based on prior knowledge of objects to

be reconstructed will provide suppression of inversion amplified data noise and

visually pleasing results relative to an unregularized solution. The particular

choice of regularization, however, has significant influence on the details of the

final result. We have shown that TV based regularizations are much better

choices for reconstructing objects of piecewise smooth density, especially if the

location of density edges are an important reconstruction feature.

We have presented methods for the applying TV regularization to 1D Abel

inversion problems with regularization in the 2D object space. Our approach

involves the use of a lagged diffusivity fixed point anlaysis. We also introduced

a simple adaptive gradient operator approach for identifying density discontinu-

ities and applying zero-cost penalty in the edge location set of the regularization

cost functional.

Current and future work includes (1) the use of data fidelity that reflects

known data characteristics, (2) extensions to 2D cylindrically-symmetric object

descriptions ρ(r, z), (3) arbitrary orientation of the object symmetry axis, and
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(4) arbitrary beam geometry (nonparallel).
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Figure Captions

Figure 1. Regularized inversion examples on a synthetic data set generated

from a simple nested-ring computational test object. The object density is de-

fined at 200 radial positions and consists of 10 individual density values. The

density profile of the object (a) is projected onto 1D and Gaussian noise is

added to obtain a synthetic 1D radiograph (b). The remaining subfigures are

four regularized object density reconstruction examples (red) against the object

reference (black): (c) unregularized; (d) H1; (e) TV; and (f) aTV.

Figure 2. Regularized inversion examples on a synthetic data set generated

from a variable density computational test object. The object density is de-

fined at 200 radial positions. The density profile of the object (a) is projected

onto 1D and Gaussian noise is added to obtain a synthetic 1D radiograph (b).

The remaining subfigures are four regularized object density reconstruction ex-

amples (red) against the object reference (black): (c) unregularized; (d) H1;

(e) TV; and (f) aTV.

Figure 3. Edge detection example from a simulated X-ray experiment. In this

example the simulation does not account for X-ray scattering. The four sub-

figures are: (a) false color radiograph; (b) computed radial areal density; (c)

H1 regularized inversion; and (d) aTV inversion. Locations of actual object

density discontinuities are shown as vertical gridlines. The horizonatal gridline

indicates the zero density level.

Figure 4. Edge detection example from a simulated X-ray experiment. This

example includes the effects of X-ray scattering. The four subfigures are: (a)

false color radiograph; (b) computed radial areal density; (c) H1 regularized
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inversion; and (d) aTV inversion. Locations of actual object density disconti-

nuities are shown as vertical gridlines. The horizonatal gridline indicates the

zero density level.

Figure 5. Edge detection example on a spherical nondestructive testing exam-

ple object examined by an actual X-ray experiment. The four subfigures are:

(a) false color radiograph; (b) computed radial areal density; (c) H1 regularized

inversion; and (d) aTV inversion. Locations of actual object density disconti-

nuities are shown as vertical gridlines. The horizonatal gridline indicates the

zero density level.
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